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ABSTRACT

Due to the spatially inhomogeneous nature of clouds there are large uncertainties in validating remote sensing
retrievals of cloud properties with traditional in situ cloud probes, which have sampling volumes measured in
liters. This paper introduces a new technique called in situ cloud lidar, which can measure extinction in liquid
clouds with sampling volumes of millions of cubic meters. In this technique a laser sends out pulses of light
horizontally from an aircraft inside an optically thick cloud, and wide-field-of-view detectors viewing upward
and downward measure the time series of the number of photons returned. Diffusion theory calculations indicate
that the expected in situ lidar time series depends on the extinction and has a functional form of a power law
times an exponential, with the exponential scale depending on the distance to the cloud boundary. Simulations
of 532-nm wavelength in situ lidar time series are made with a Monte Carlo radiative transfer model in sto-
chastically generated inhomogeneous stratocumulus clouds. Retrieval simulations are performed using a neural
network trained on three parameters fit to the time series of each detector to predict 1) the extinction at four
volume-averaging scales, 2) the cloud geometric thickness, and 3) the optical depth at four averaging scales.
Even with an assumed 20% lidar calibration error the rms extinction and optical depth retrieval accuracy is only
12%. Simulations with a dual wavelength lidar (532 and 1550 nm) give accurate retrievals of liquid water content
and effective radius. The results of a mountain-top demonstration of the in situ lidar technique show the expected
power-law time series behavior.

1. Introduction

Understanding and predicting the radiative impacts
of clouds on the earth’s climate is complicated by the
large variability of cloud microphysical properties, both
across different cloud types and within even a single
cloud. Traditionally, in situ measurements of cloud op-
tical properties have been carried out with optical par-
ticle counting probes that attempt to measure droplet
size distributions [e.g., the Particle Measuring Systems
Forward Scattering Spectrometer Probe (FSSP) and 2D
imaging probes, Knollenberg 1981]. Light scattering
calculations (e.g., Mie theory for spherical droplets) are
then applied to the size distributions to estimate the
desired optical properties, such as volume extinction,
single scattering albedo, and asymmetry parameter.
More recently, as in situ measurements have been sought
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for cloud-radiation studies, cloud probes have been de-
signed to directly measure optical properties, such as
an airborne transmissometer (Korolev et al. 1999), a
cloud extinctometer (Zmarzly and Lawson 2000), and
a cloud integrating nephelometer (Gerber et al. 2000).

A common problem with in situ cloud measurements,
whether of microphysical or optical properties, is their
small sampling volumes. The FSSP-100, for example,
measures a volume of about 300 cm3 in a 1-km traverse.
Considering that a cumulus cloud can contain 1015 cm3,
the FSSP samples a tiny fraction of the cloud volume.
This is significant because of the extreme variability of
cloud density down to centimeter scales (Baker 1992;
Davis et al. 1999b). The sampling volumes of traditional
cloud probes are totally inadequate to characterize the
bulk properties of clouds.

Remote sensing methods observe large cloud vol-
umes, but the measurements tend to be more indirectly
related to cloud properties. For example, visible/near-
infrared solar reflectance techniques (e.g., Nakajima and
King 1990) retrieve cloud optical depth and effective



1506 VOLUME 20J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 1. An artist’s rendition of the in situ cloud lidar, showing the
laser beam exiting the Learjet cabin window to the right, while up-
ward- and downward-viewing detectors on the left wingtip record a
time series of the multiply scattered light.

radius, but the effective radius is weighted toward the
cloud top (e.g., Platnick 2000) and the errors from three-
dimensional radiative transfer effects are substantial
(Varnai and Marshak 2001). Active remote sensing tech-
niques such as cloud radar can retrieve range-resolved
cloud properties (Liao and Sassen 1994; Fox and Il-
lingworth 1997; Donovan and van Lammeren 2001).
Since cloud radars measure the sixth moment of the
droplet size distribution, these measurements are also
rather indirectly related to the desired quantities, such
as liquid water content (proportional to the third mo-
ment) and visible extinction (proportional to the second
moment). In situ cloud measurements generally have
the advantage of being more directly related to the de-
sired microphysical or optical properties than remote
sensing measurements.

An important application of in situ cloud measure-
ments is validation of cloud remote sensing measure-
ments. Comparisons of in situ and remote sensing mea-
surements are hampered by the mismatch in sampling
volumes. Given the observed variability inside clouds
(e.g., Davis et al. 1999b), the sampling error from ex-
trapolation of the in situ cloud probe measurement of a
few liters to the remote sensing measurement of millions
of cubic meters is probably as large as the expected
retrieval error. Thus, an accurate in situ cloud measure-
ment technique that could sample a volume of millions
of cubic meters would be very valuable for validating
active and passive cloud remote sensing techniques.

This paper describes a new cloud measurement tech-
nique we call in situ lidar. The in situ lidar differs from
a regular lidar in that it uses a very wide field-of-view
detector pointed away from the laser beam direction (see
Fig. 1 for a depiction of a proposed instrument). Inside
an optically thick cloud the laser pulse is multiply scat-
tered by cloud droplets and a small portion of the light
returns to be measured by the detectors. The signal mea-
sured by the instrument is the number of photons re-
turned as a function of time. The amplitude and shape
of the returned pulse contain information about the dis-

tance to the cloud boundaries and the volume average
extinction (units of km21) in water clouds at different
spatial scales around the instrument. The in situ cloud
lidar thus works by taking advantage of the multiple
scattering, rather than avoiding it as is done in conven-
tional lidar research. This in situ cloud lidar concept
was inspired by an omnidirectional multiple scattering
lidar technique used to characterize the scattering and
absorption coefficient in Antarctic ice (Askebjer et al.
1997). In addition to its obvious application for vali-
dating cloud remote sensing, we believe that the in situ
lidar will be valuable for cloud physics and chemistry
research by providing measurements of water droplet
surface area (proportional to extinction) that are more
representative of cloud average values than those from
current in situ techniques.

The most similar passive in situ sensing instrument
is the cloud absorption radiometer (King 1986), which
retrieves the single scattering albedo at a number of
wavelengths from the angular characteristics of the dif-
fusing solar radiation deep inside a cloud. Multiple scat-
tering based lidar cloud remote sensing techniques have
been developing recently. The method of Bissonnette
and Hutt (1995) retrieves extinction and effective par-
ticle diameter profiles in clouds with optical depths up
to about 4 using a traditional lidar setup. For optically
thick clouds the ‘‘off-beam’’ lidar technique has been
proposed to remotely sense both optical depth and geo-
metric thickness of a cloud layer (Davis et al. 1999a).
A ground-based wide angle imaging lidar (Love et al.
2001) built at Los Alamos National Laboratory has op-
erated with a YAG 532-nm laser and a special-purpose
high-speed photon-counting imager. An aircraft-based
instrument, Thickness from Off-beam Returns (THOR),
built at National Aeronautics and Space Administration
(NASA) Goddard Space Flight Center, successfully op-
erated on its first test flight in March 2002. Both the
off-beam lidar technique and the in situ lidar technique
take advantage of multiple scattering and photon dif-
fusion to retrieve properties over large cloud volumes.

SPEC, Inc., built and operated a prototype in situ
cloud lidar in spring 2002. The prototype lidar consisted
of a vertically pointing Nd:YAG laser operating at a
wavelength of 532 nm and a detector based on a pho-
tomultiplier tube. In April 2002 the lidar was deployed
on a mountaintop at the Storm Peak Laboratory above
Steamboat Springs, Colorado. This brief experiment
successfully demonstrated the in situ cloud lidar con-
cept. NASA has funded SPEC with a 2-yr Small Busi-
ness Innovative Research contract to develop a proto-
type airborne instrument.

The next section of the paper discusses how diffusion
theory can be used to understand the in situ lidar tech-
nique. Section 3 reports on simulations of a 532-nm
wavelength in situ lidar in inhomogeneous stratocu-
mulus clouds, an inversion technique for volume-av-
eraged extinction, cloud thickness, and optical depth,
and estimates of the retrieval accuracy. Section 4 de-
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scribes the prototype in situ cloud lidar built by SPEC,
Inc. and some results of the test of this prototype. Sec-
tion 5 explores the potential of expanding the concept
to a two-wavelength lidar for measuring liquid water
content and effective radius. Section 6 summarizes the
results and describes plans for building a prototype air-
borne in situ lidar.

2. Diffusion theory for the in situ lidar

In an optically dense cloud the photons in the lidar
pulse are scattered before propagating very far. The
mean distance between scattering events is 1/b, where
b is the volume extinction coefficient. This ‘‘mean free
path’’ is typically 10–100 m. The photons scatter many
times because there is virtually no absorption at the 532-
nm wavelength and the cloud is optically thick. Since
the cloud droplets are large compared to the laser wave-
length, most of the time the photons scatter by a small
angle. However, there are so many scattering events that
the photons eventually travel in all directions and spread
out of the laser beam to cover the region around the
lidar with a diffuse light. At this point the photon be-
havior may be described as a random walk and diffusion
theory may be applied. The photons diffuse away in all
directions from the lidar source and eventually leak out
of the cloud.

Given the tremendous number of photons emitted by
the laser, some will find their way back to the detectors.
If a detector is pointed in the direction of the lidar beam,
then many photons will return quickly by backscatter-
ing. For a detector pointed away from the lidar beam,
the paths to the detector are more circuitous, fewer pho-
tons will be detected, and they will typically take longer
to arrive. The larger the cloud extinction, the more pho-
tons will scatter into the detector and the longer it will
take for the swarm of photons to diffuse away. If there
is a small amount of absorption, that absorption is made
detectable by the large number of scattering events a
photon undergoes. As the lidar pulse spreads and dif-
fuses throughout the cloud, the boundaries of the cloud
are felt. The number of photons detected decreases more
rapidly once the diffusion bubble reaches the cloud
boundary.

A diffusion solution to the radiative transfer equation
can approximate the in situ lidar situation. This problem
is similar to that of lightning radiative transfer in clouds,
which has been treated with diffusion theory by Koshak
et al. (1994). The notation used here follows Davis and
Marshak (2002) who use diffusion theory for the cloud
transmission problem. Diffusion theory is appropriate
after the lidar pulse photons have scattered enough times
that all knowledge of their initial direction is lost. The
time to reach the diffusion regime (td) is roughly twice
the time to cover a transport mean free path (lt):

2l 2tt ø 5 , (1)d c c(1 2 v g)b0

where lt 5 1/[(1 2 v0g)b], c is the speed of light, v0

is the single scattering albedo, and g is the asymmetry
parameter. For wavelengths shorter than about 0.9 mm
there is essentially no absorption, so v0 5 1. For typical
liquid cloud droplet distributions g 5 0.84 2 0.87 is
derived from Mie theory. The transport mean free path
corrects the mean free path for the predominance of
forward scattering.

The key radiative quantity in diffusion theory is the
scalar flux, J. The scalar (or actinic) flux is related to
the mean radiance by J 5 4p and to the radiant energyI I
density U by J 5 cU. In a homogeneous medium the
diffusion equation for the scalar flux is (Davis and Mar-
shak 2002)

]J
22 D¹ J 5 2cb J, (2)a]t

where D is the diffusion coefficient with units of squared
meters per second and ba 5 (1 2 v0)b is the absorption
coefficient. In a homogeneous medium the diffusion co-
efficient is

cl ctD 5 5 . (3)
3 3(1 2 v g)b0

The diffusion equation can be solved by Fourier trans-
forming the equation in space, solving the first-order
ordinary differential equation in time, and transforming
back. The radiance in direction V may then be obtained
from the scalar flux by I(t, r, V) 5 (1/4p)[1 2 ltV ·
=]J(t, r).

The solution to the diffusion equation for an isotropic,
instantaneous pulse of light emitted from a infinitesimal
source at the origin is

2E c rp 2cb taJ(t, r) 5 e exp 2 , (4)
3/2 1 2(4pDt) 4Dt

where Ep is the energy in the emitted pulse. The solution
is a Gaussian in radius r whose width is proportional
to the square root of time:

2ct
2 1/2^r & 5 Ï2Dt 5 . (5)!3(1 2 v g)b0

An extinction of 60 km21 gives a diffusion timescale
of 0.8 ms, which corresponds to an rms radius of about
140 m. Of course, a highly directed lidar pulse is not
isotropic, but it becomes effectively isotropic after trav-
eling about one transport mean free path. For arrival
times in the diffusion regime, a detector collocated with
the lidar is close to the maximum of the Gaussian scalar
flux field where the radiance field is isotropic. The ra-
diance is obtained from (4) with r 5 0, giving

E cp 2cb taI ø e . (6)
5/2 3/2(4p) (Dt)

The energy received by a detector is Ed 5 IAdVdDt
where Ad is the detector area, Vd is the detector solid
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angle, and Dt is the detector time bin size. In this paper
the detected energy is expressed by the fraction of emit-
ted photons per detector area per detector solid angle
per time. In the diffusion regime in a uniform infinite
cloud the photon fraction is then

3/2
E c 3(1 2 v g)bd 0 2cb taf 5 5 e . (7)p 5/2 [ ]E A V Dt (4p) ctp d d

This equation shows the relationship between the mea-
sured time series signal and the extinction b. It is ac-
tually the scaled extinction (1 2 v0g)b that is measured,
but the scaled extinction is precisely the quantity that
is most important radiatively. In liquid clouds the asym-
metry parameter g is well known, allowing the actual
extinction to be readily determined. For a homogeneous
infinite cloud, diffusion theory predicts that the in situ
lidar signal is a power law in time multiplied by an
exponential if there is absorption.

The diffusion equation also can be solved for a ho-
mogeneous medium with boundaries in the vertical. The
boundary condition is no flux entering at cloud base and
top. These boundary conditions translate to a linear con-
straint on the scalar flux J and its derivative ]J/]z. It is
simpler to use the linear extrapolation approximation
(e.g., see Koshak et al. 1994) and set the scalar flux to
zero somewhat beyond the actual boundaries, J(z 5 H/
2 1 2lt/3) 5 0 and J(z 5 2H/2 2 2lt/3) 5 0, where
H is the cloud thickness and (2/3)lt is the extrapolation
length, which is usually small compared to the cloud
thickness. The solution method is to apply a Fourier
transform to the diffusion equation in x and y, but use
a Fourier cosine series in z with each term satisfying
the boundary conditions. The solution for an isotropic
pulse of light emitted at the origin is

2 2E c x 1 yp 2cb taJ(t, r) 5 e exp 21 24pDt 4Dt
` 2 pn22Dtg n3 e cos(g z) g 5 , (8)O n nH Hn51,3,... e e

where He 5 H 1 (4/3)lt is the cloud thickness including
the extrapolation lengths. For times in which the radius
of the photon bubble is small compared to the distance
to the boundaries, the Fourier sum over odd terms is a
Gaussian function and the scalar flux agrees with the
diffusion solution for the infinite medium. The scalar
flux is again evaluated at the origin and converted to
photon fraction to give the in situ lidar time series

`c 2 22cb t 2Dtga nf 5 e e . (9)Op 2(4p) Dt H n51,3,...e

For times t . /(20D) (e.g., t . 3.8 ms for b 5 602H e

km21, v0 5 1, g 5 0.86, and H 5 800 m) the sum is
dominated by the first term. Thus for a nonabsorbing
uniform medium, diffusion theory predicts that the time
series behavior at later times is a power law (t21) mul-
tiplied by an exponential (e ) with the timescale tb 52t/tb

3 /(p 2clt). The photon fraction for times t , /2 2H He e

(20D) is well approximated by the infinite medium so-
lution, which is simply a power law (t23/2) for nonab-
sorbing media.

A comparison was made between the diffusion model
and the Monte Carlo model described in the next section
for a uniform water cloud with thickness H 5 800 m,
extinction b 5 60 km21, and asymmetry parameter g
5 0.86 (from Mie theory for effective radius re 5 8
mm at 532 nm). After about 2 ms the diffusion model
time series has the same shape as the Monte Carlo result
but is higher by a factor of about 1.3. We ascribe this
to the directed laser beam and forward scattering me-
dium, which cause the photon bubble to be offset from
the lidar and elongated in the direction of the beam
instead of symmetric around the detector as assumed by
the diffusion model. An experiment with an equivalent
isotropic scattering medium showed agreement between
the diffusion and Monte Carlo models to within 10%
throughout the whole time series.

3. In situ lidar retrieval simulations

a. Monte Carlo radiative transfer model

The modeling results shown in this article are gen-
erated with a special-purpose forward Monte Carlo
model. The model simulates many photon trajectories
from the laser to the detectors. At each scattering event
the photon is scattered to a new direction according to
the Mie phase function in that grid box. The photon
travel time is simply the total photon distance traveled
to the detector divided by the speed of light. A photon
trajectory is ended when its travel time exceeds a spec-
ified maximum time.

Since it is very unlikely for a photon to travel into a
detector, instead at each scattering event the probability
for a photon to travel directly to the detector is deter-
mined (if the event is in the detector field of view). This
probability is added to the detector signal for the ap-
propriate time bin. The probability to scatter into a de-
tector is

2p 5 T (x, x )P(V · V9)(2n · VA /R ), (10)d d d

where T (x, xd) is the transmission from the scattering
event location (x) to the detector location (xd), and P(V
· V9) is the phase function for scattering from the photon
incident direction V9 to the direction to the detector V.
The term 2n · VAd/R2 is the projected solid angle of
the detector, where Ad is the area of the detector, n is
the unit normal vector in the direction the detector
views, and R is the distance from the scattering event
to the detector. The statistical Monte Carlo noise is large
when only a few of the many simulated photons make
a large contribution to the lidar signal. All three factors
in the probability of the photon traveling to the detector
are sources of Monte Carlo noise. Most of the photons
are too far from the detector to have a significant trans-
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mission. If a scattering event is very close to the detector
(R small), then the detector solid angle can be very large,
and if a photon is initially heading nearly straight toward
the detector, then the phase function, with its very strong
forward peak, will be huge.

A reduction in the latter two sources of Monte Carlo
noise is made by pretending that there is a much larger
virtual detector. Once the signal is in the diffusion re-
gime, it should not change if the detector is moved by
a distance that is small compared to a mean free path.
The probability to scatter to the detector is integrated
over the large area of the virtual detector, which smooths
over the narrow forward peak in the phase function. The
lidar signal for the virtual detector is then scaled to that
of the actual detector by the ratio of the detector areas.
The integral of the phase function over the solid angle
of the virtual detector is precalculated and stored in a
lookup table. The radius of the virtual detector disk is
the smaller of 0.2 times the local mean free path and
10% of the total photon distance, which simulations
show is small enough so that the results are not affected
significantly by the use of the virtual detector. The vir-
tual detector approach reduces the Monte Carlo noise
by more than an order of magnitude.

The optical properties (extinction, single scattering
albedo, and phase function) are specified on a three-
dimensional grid input to the Monte Carlo model. The
optical properties are assumed to be uniform in each
grid cell. The surface has uniform Lambertian reflection
specified by the albedo. The laser beam has a Gaussian
profile specified by a half-width at half-maximum. Mul-
tiple detectors, with arbitrary pointing directions and
uniform sensitivity inside the field of view, can be sim-
ulated. The lidar signal can be output either for linear
or logarithmic spaced time bins. An estimate of the
Monte Carlo noise at each time sample is generated from
the variance over 25 batches of photons. The lidar signal
output is the photon fraction in units of (ms ster cm2)21.

b. Stratocumulus stochastic cloud generation

Fractal models are often used to simulate turbulently
mixed clouds because they can capture the observed
statistics and generate fields more rapidly and with a
larger range of scales than large eddy simulation models.
There are two common methods for generating fractal
clouds: cascades, such as the bounded cascade (Cahalan
et al. 1994), and Fourier filtering methods (Schertzer
and Lovejoy 1987; Barker and Davies 1992). Here the
Fourier filtering approach is used to generate overcast
liquid cloud fields with variability in all three dimen-
sions. Two correlated stochastic fields are generated:
liquid water content (LWC) and droplet number con-
centration (N ).

The procedure starts by generating independent
Gaussian random numbers for the Fourier components
of one three-dimensional field. The Gaussian random
deviates for the second field are generated with a spec-

ified correlation to the first field. The two Fourier noise
fields are filtered with a power law in the wavenumber
(ka) specified by a slope parameter a. This has the effect
of reducing the power in the high spatial frequencies,
thus introducing spatial correlations. Using a power law
as the Fourier filter results in scaling or fractal behavior
of the cloud field. The two real filtered Gaussian noise
fields are then Fourier transformed, which can be per-
formed with one complex FFT. The resulting fields are
periodic, which is desired in the horizontal but not in
the vertical. Therefore, only half of the vertical levels
in the generated fields are used further. Since cloud LWC
is observed to resemble a lognormal distribution, the
first transformed field is scaled to achieve the specified
log standard deviation, and then exponentiated. Actual
clouds do not have mean LWC profiles that are uniform
with height. For stratocumulus the mean LWC profile
is observed to increase linearly with height throughout
most of the layer following the adiabatic LWC profile.
Near the top of the cloud layer the mean LWC profile
decreases rapidly due to entrainment of dry air above
the temperature inversion. This behavior is simulated
by multiplying the stochastic LWC field by a piecewise
linear profile consisting of two segments, which are zero
at the cloud bottom and top for these clouds. After this
profile modulation, the LWC field is scaled to obtain
the desired mean liquid water path (LWP).

The second stochastic Gaussian field is used for the
droplet concentration field, and is simply scaled and
shifted to give the specified mean and standard deviation
of number concentration. The LWC and number con-
centration at each point in the field are combined to
obtain the effective radius assuming a gamma droplet
size distribution with an effective variance of 0.1. This
stochastic cloud model for stratocumulus clouds is spec-
ified by eight parameters: mean liquid water path, stan-
dard deviation of log of LWC (before profile is applied),
Fourier space power-law spectral slope, Gaussian cor-
relation between LWC and N, mean and standard de-
viation of droplet concentration (N ), fractional altitude
of maximum of LWC, and cloud layer thickness. There
are also other auxiliary parameters such as the horizontal
domain size and the grid spacing.

For the in situ lidar modeling 100 cloud fields are
simulated. Six of the eight stochastic cloud field param-
eters, including the cloud thickness and amount of var-
iability, are themselves chosen randomly from a uniform
distribution. The cloud mean liquid water path is ob-
tained indirectly by randomly choosing the mean value
of the increase in LWC with height (with units of g m22

km21), so that the LWP is proportional to the cloud
thickness squared. In addition, the cloud-base height and
surface albedo are randomly selected for each field. Ta-
ble 1 lists the ranges of parameter used in the simulation.
The horizontal domain is 3.2 km 3 3.2 km with 25-m
grid spacing (128 3 128 grid). Figure 2 shows a Y–Z
cross section of liquid water content and effective radius
in one of the stochastic cloud fields (labeled StCu21).
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TABLE 1. Stochastic cloud field parameters for the stratocumulus (stCu) modeling.*

Parameter Range StCu21 StCu6

Cloud thickness (km)
Mean LWC km21 (g m3 km21)
Std dev log LWC (before profile modulation)
Spectral power-law slope
Correlation between LWC and concentration

0.20–1.00
0.5–1.5
0.1–0.8

21.5–22.0
0.75

0.825
1.03
0.17

21.92
0.75

0.425
0.91
0.79

21.66
0.75

Mean droplet concentration (cm23)
Std dev of concentration
Fractional height of modulation profile
Cloud-base height (km)
Surface albedo

50–300
Mean/4

0.9
0.3–0.6

0.05–0.25

177
44
0.9
0.427
0.110

198
49
0.9
0.334
0.067

* When a range in parameter values is given, a uniform distribution between these values is used.

FIG. 2. An Y–Z cross section of liquid water content and effective
radius in the simulated cloud field labeled StCu21.

FIG. 3. Scatterplot of effective radius vs liquid water content in
cloud field StCu21.

This is one of the thicker, smoother, and least variable
fields (see parameters listed in Table 1). The procedure
of using two stochastic fields to specify the LWC and
droplet concentration fields separately results in more
realism in the relationship between effective radius and
LWC (Fig. 3). A typical parameterization would give a
single effective radius for each LWC, rather than the
more appropriate spread of values. The goal with these
parameter choices is to cover a wide range of variability
to represent all stratocumulus clouds.

With the gamma droplet size distribution assumption,
the cloud physical properties of liquid water content and
effective radius are converted to optical properties of
volume extinction, single scattering albedo, and phase
function using Mie theory at the 532-nm laser wave-

length. Since water droplets do not absorb at 532 nm,
the single scattering albedo is equal to unity. The phase
function is weakly dependent on the effective radius.
Thus extinction is the key optical property of clouds
that is variable for visible wavelengths. Figures 4 and
5 show Y–Z cross sections of extinction and the vertical
integral of extinction (optical depth) for two fields.
Compared to the StCu21 field, the StCu6 field has small-
er cloud thickness, more variability (larger standard de-
viation of the log LWC), and greater roughness (less
steep Fourier spectral slope).

c. In situ lidar simulations

The forward Monte Carlo model is used to simulate
in situ lidar time series at four positions in each of the
100 stochastic cloud fields. The positions are 0.4, 1.2,
2.0, and 2.8 km in Y and 1.6 km in X. The lidar altitude
is randomly chosen between 10% and 90% of the cloud
depth. The lidar geometry is as depicted in Fig. 1. The
laser is pointed in the 1X direction (along the airplane
wing) and has a Gaussian beamwidth of 28 (half-width
at half-maximum). Two detectors located 8 m in the 2X
direction from the laser are simulated pointing in the
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FIG. 4. An Y–Z cross section of extinction and X–Y plot of optical
depth for stochastic cloud field StCu21. The crosses show locations
where the in situ lidar was simulated.

FIG. 5. An Y–Z cross section of extinction and X–Y plot of optical
depth for another of the 100 stochastic cloud fields used in the in
situ lidar simulations. This cloud field is quite different from the one
in Fig. 4, and serves to illustrate the wide range of simulated fields.

1Z and 2Z directions (up and down). The detector field
of view is 628.68 (0.50 rad), and its area is 20 cm2.
The simulated lidar signal is accumulated from 0.125
ms until 32 ms with time bins spaced at factors of

. There is molecular Rayleigh scattering in additionÏ2
to cloud droplet scattering throughout the domain from
the surface to 2-km height. There is Lambertian surface
reflection with the albedo for each field randomly chosen
between 0.05 and 0.25 (i.e., an unknown but fairly dark
surface). There are 107 photon trajectories in each sim-
ulation.

Figure 6 plots four in situ lidar simulated time series
from the two cloud fields shown before. As expected
from diffusion theory, the signal from the thinner cloud
(StCu6) falls off much more rapidly than from the thick-
er cloud (StCu21). The two time series for StCu21 il-
lustrate how the signal at different times responds to the
extinction at different distances from the lidar. The sig-
nal for y 5 2.8 km starts out larger than the signal for
y 5 2.0 km because the local extinction is greater at y
5 2.8 km. On average the extinction around y 5 2.0
km increases with distance, while the extinction around
y 5 2.8 km decreases, which results in the two lidar
time series having the same strength after about 1.0 ms.

The time series for upward- and downward-facing de-
tectors (StCu6) illustrates how the distance to the cloud
boundaries affects the lidar signals. After about 0.5 ms
the signal for the upward-pointing detector is lower than
that for the downward-viewing detector because the li-
dar is close to the cloud-top boundary. The loss of pho-
tons from the top boundary causes the net flux to be
upward, which means that more photons are going up
than down.

The in situ lidar simulations described in this paper
ignore the effect of photon absorption and scattering by
the airplane platform. A special simulation is designed
to test whether this assumption is warranted. The main
property of the aircraft that is important for the in situ
lidar photons is the total surface area of the platform.
Thus we model the platform as a rectangular surface 15
m (in X) 3 4 m (in Y) oriented horizontally. The center
of this winglike surface is 2 m to the left (2X), 4 m
aft (2Y), and 1 m below (2Z) the laser location. The
albedo of the platform is 0.6, and when photons reflect
they do so isotropically (Lambertian surface). Since
both sides are active the total surface area is 120 m2,
which is roughly the surface area of a Learjet. Figure
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FIG. 6. Simulated in situ lidar time series for upward-pointing de-
tectors at two locations in cloud field StCu21 and upward- and down-
ward-viewing detectors at one location in field StCu6. The error bars
indicate the uncertainty due to Monte Carlo noise.

FIG. 7. Simulated in situ lidar time series for the downward-pointing
detector at y 5 2.0 km in field StCu21 with and without the effect
of the aircraft platform.

7 shows one in situ lidar time series with and without
the effect of the airplane surface. The differences be-
tween the two curves are small compared to the Monte
Carlo noise, though the difference in the first time bin
may be real.

d. Cloud property retrievals

One purpose of the in situ lidar is to measure volume-
averaged extinction, but how should the volume average
be defined? We choose a Gaussian-weighted volume
average extinction, since from diffusion theory the pho-
ton density in a uniform medium has a Gaussian spatial
pattern. The Gaussian-weighted volume-averaged ex-
tinction, bs, is defined by

b 5 b(x 1 x, y 1 y, z 1 z)s E 0 0 0

2 2 21 (x 1 y 1 z )
3 exp 2 dx dy dz, (11)

2 3/2 2[ ](2ps ) 2s

where b(x, y, z) is the extinction field defined in x, y,
z coordinates, and s is the rms radius of the Gaussian
pattern around point (x0, y0, z0). Thus the averaging
volume is a fuzzy-edged spherical region with most of
the influence contained within a distance of 2s from the
center. Since the laser beam shoots away from the lidar
and the photons take about 1/(1 2 g) or ø7 scatterings
to become isotropic, the center of the volume sampled
by the in situ lidar is shifted somewhat in the direction
of the laser beam. Some results shown later have the
center of the Gaussian pattern shifted by 0.15/[(1 2
g)b] (20 m for b 5 50 km21), which gave the greatest
correlation between the in situ lidar signal and the av-
erage extinction in a coarse search.

Figure 8 shows the relationship between the volume-
averaged extinction at three scales (25, 50, and 100 m)

and the simulated in situ lidar signal sampled at three
time bins (centered on 0.6, 1.2, and 2.4 ms). The figure
shows that the volume-averaged extinction at a partic-
ular scale is correlated well to the lidar signal at a par-
ticular time and less correlated to the signal at other
times. For example, the 50-m scale extinction is best
correlated to the 1.2-ms sampled time.

The relatively smooth nature of the in situ lidar return
time series suggests that the information content could
be extracted by fitting with a simple function. Consid-
ering the power-law times exponential behavior from
the diffusion model, a form of p(t) 5 a9t2b exp(2ct)
seems appropriate. The curve fits are performed in log
space so that a linear least squares program can be used
and so as to not overemphasize the early portion of the
signal. Therefore, the functional form used in the lidar
signal fit is

ln[p(t)] 5 a 2 b ln(t) 2 ct, (12)

where p(t) is the photon fraction signal as a function of
time. The signal uncertainties for the linear least squares
are obtained from the Monte Carlo standard deviation
estimates, e, which are translated to fraction error (e/p)
for the log space fit. The first part of the time series
deviates from the power-law behavior due to the dis-
tance between the lidar and detectors, and it also rep-
resents a small averaging volume, so only bins after a
minimum time tmin are used for the fitting. Over the 400
cases (4 positions in 100 cloud fields) the median re-
duced x2 of the fit is 3.5 and 3.2 (for up and down
detectors, respectively) for tmin 5 0.2 ms, and 1.9 and
1.7 for tmin 5 0.5 ms, indicating that ignoring the first
0.5 ms of the time series results in a better fit. These
reduced x2 values show that the bulk of the in situ lidar
signal is fit well with the power-law times exponential
function, meaning that just three numbers (a, b, c) rep-
resent most of the available information. The deviations
from the functional form are significant (above the cur-
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FIG. 8. The Gaussian-weighted volume-averaged extinction for three sized volumes vs the in situ lidar signal sampled at three different
times for the stratocumulus simulation. The linear correlation coefficient r (in log space) is listed for each graph.

rent amount of Monte Carlo noise), presumably due to
cloud inhomogeneities, so there is some additional in-
formation contained in these time series. For fits to the
average of the up and down detector time series, the
mean of the exponent b is 1.14, while the standard de-
viation is 0.32. This range for the exponent is consistent
with the diffusion theory solution for finite clouds, con-
sidering that the diffusion theory was developed for
uniform clouds.

A retrieval algorithm was developed using a neural
network (NN) to relate the fit parameters a, b, and c to
the volume-averaged extinction and cloud thickness.
This neural network is simply used as a nonlinear re-
gression technique to fit the output (e.g., log of averaged
extinction at four different scales) to the input (a, b, c).
The neural network algorithm is modeled after NN-fit
(available online at http://www.gch.ulaval.ca/;nnfit).

The neural network consists of two layers of neuronal
units: hidden units connected to the inputs and output
units connected to the hidden units. Each unit multiplies
its inputs by a set of weights and the sum is then non-
linearly transformed by the sigmoid function [ f (z) 5 1/
(1 1 e2z)] to produce the unit output. Thus, the weights
of all the units are the ‘‘regression’’ coefficients that are
adjusted to minimize the rms error between the predicted
outputs and the desired outputs. A conjugate gradient
routine is used to perform this minimization. The neural
net is trained on a random portion of the dataset, while
the rest of the dataset is used to test the network. This
is important because a neural network can ‘‘overfit’’ the
data in a way that does not generalize. The overfitting
problem is much like fitting an nth degree polynomial
to n datapoints: the resulting curve will go through each
datapoint, but will most likely give bizarre results at
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FIG. 9. The in situ lidar volume-averaged extinction retrievals vs the true extinction values.
Here bs is the volume-averaged extinction weighted by a Gaussian pattern with an rms radius
of s m. Shown are 200 cases from the stochastic stratocumulus simulation used to test the neural
network.

other locations. Overfitting is prevented by early stop-
ping, that is, stopping the minimization iterations when
the error in the testing dataset stops decreasing.

Half of the 400 cases are used to train the neural net.
Different networks are trained for predicting log ex-
tinction at four scales (s 5 25, 50, 100, 200 m), log
optical depth at four Gaussian-weighted horizontal
scales (s 5 50, 100, 200, 400 m), and cloud geometric
thickness and cloud relative airplane height. The inputs
in each case are the three parameters (a, b, c) fit to the
in situ lidar signal for the up and down detectors (total
of six input parameters). There are usually 20 hidden
units in the network.

The volume-averaged extinction retrieval accuracy
for four scales ranging from s 5 25 to s 5 200 m is
illustrated in Fig. 9. The rms retrieval accuracies are
listed in Table 2. A typical rms retrieval error is about
8%, which is much smaller than the range of extinction
in the simulated clouds (the standard deviation is a factor
of 1.8). The errors are usually lowest for the s 5 50
m and s 5 100 m volume averages. The retrieval errors
are slightly lower when the averaging volume is offset
in the direction of the laser beam, which is the exper-
iment shown in Fig. 9. Another experiment shows that

the retrieval error is somewhat lower when the neural
network is trained directly with 28 time series values
(14 bins for two detectors) instead of the parameters of
the power-law times exponential function fit. The first
set of retrieval accuracies are shown for no calibration
error. Of course, a real instrument will have calibration
uncertainty. This is modeled by multiplying the in situ
lidar signals input to the neural network retrieval al-
gorithm by a constant ‘‘calibration error factor’’ of 1.2
(20% error) or 1.5 (50% error). Table 2 shows the sur-
prising result that the retrieval error is only about half
of the calibration error (50% calibration error gives
about 25% retrieval error).

The average extinction for different-sized volumes
are correlated, of course, but is this correlation the rea-
son why the in situ lidar technique can accurately re-
trieve the extinction at different scales? Figure 10 shows
that while there is reasonable correlation between near-
by scales, the correlation is quite poor as the size of the
averaging volumes diverge. This figure indicates that
the in situ lidar really is able to retrieve the cloud ex-
tinction averaged over different distances in inhomo-
geneous clouds.

The exponential behavior of the in situ lidar signal
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TABLE 2. The in situ lidar rms retrieval accuracy of ln (bs).*

Ncase Dataset b25 b50 b100 b200 Experiment

200
200

Training
Testing

0.074
0.082

0.064
0.068

0.062
0.072

0.077
0.091

No volume offset

200
200

Training
Testing

0.067
0.074

0.049
0.059

0.050
0.062

0.066
0.081

With volume offset

200
200

Training
Testing

0.049
0.060

0.048
0.062

0.045
0.071

0.055
0.096

Retrieval from 28 time bins
with no volume offset

400
400
400

All cases
All cases
All cases

0.070
0.127
0.250

0.054
0.118
0.245

0.056
0.122
0.250

0.074
0.129
0.247

No calibration error
20% calibration error
50% calibration error

200 Testing 0.632 0.618 0.589 0.580 Standard deviation of cases

* bs is the volume-averaged extinction weighted by a Gaussian with rms radius of s. Since they are small the rms retrieval accuracies of
ln(b) may be interpreted as rms fractional errors in b. For comparison the variability (std dev) of lnb is also listed. The accuracy of the
200 cases used for training the neural network are listed separately from the 200 cases used to test the neural network for each of several
experiments. The last experiment section lists the retrieval accuracy for all 400 cases with varying factors of calibration error.

due to the photon diffusion bubble reaching the cloud
boundaries allows the retrieval of cloud thickness. Fig-
ure 11 shows that cloud thickness can indeed be re-
trieved and that the error is smaller for the thinner
clouds. The different responses of the upward- and
downward-pointing detectors allows the in situ lidar to
measure the cloud relative altitude of the airplane as
shown in Fig. 11. Table 3 lists the retrieval errors. The
cloud thickness and airplane height retrievals are almost
insensitive to the lidar calibration, since they depend on
the shape of the lidar time series. The simulations as-
sumed little knowledge of the surface reflection effect,
with the albedo ranging from 0.05 to 0.25 and varying
cloud-base heights. Figure 12 shows the results of an
experiment testing the effect of this range of surface
albedo on the lidar time series. There is a significant
difference only in the latter part of the time series, with
the brighter surface having a larger signal as fewer pho-
tons are lost from the system. The time at which the
surface albedo effect becomes important depends on the
height of the cloud base, and higher base clouds will
have less sensitivity to surface albedo. Since the cloud
thickness is determined from these latter times, we ex-
pect the cloud thickness retrievals to be improved if
there is better knowledge of the surface albedo. The
cloud thickness retrievals should also improve if the
airplane is flown near the middle of the cloud.

Given that the in situ lidar can accurately retrieve
volume-averaged extinction and cloud thickness, it
should also be able to sense the cloud optical depth
averaged over a suitable area. The optical depth is av-
eraged using two-dimensional Gaussian weighting func-
tions (specified by rms radius s) centered on the lidar.
Figure 13 shows the retrieval accuracy for the s 5 200-
m scale of area-averaged optical depth, while Table 4
lists the retrieval accuracy for all four scales. Two ex-
periments are shown: one for all cases and one for those
cases in which the airplane is near the center of the
cloud. As one might expect, the accuracy of the optical
depth retrieval increases substantially when the airplane
is near the cloud middle. The rms optical depth retrieval

error at the 200-m scale for these cases is about 8%,
while the simulated variability is a factor of 2.0. The
sensitivity of the optical depth retrieval to lidar cali-
bration is similar to the extinction retrieval.

Given that only three parameters fit to the in situ lidar
time series for each detector are input to the neural
network retrieval, it is appropriate to think that at most
three cloud properties can be retrieved. These three
properties can be thought of as the volume-averaged
extinction at some scale, the rate at which the extinction
changes with the scale of the averaging volume, and the
distance to the cloud boundaries.

4. Prototype in situ lidar demonstration

The prototype in situ lidar designed and built by
SPEC, Inc., consists of two basic components: a high-
powered, pulsed Nd:YAG frequency doubled laser op-
erating at 532 nm and a photomultiplier tube (PMT)
detector and associated control and recording electron-
ics. The YAG laser emits a 5-ns-long pulse of green
light 15 times per second. At full power the energy in
a pulse is 105 mJ, as measured by the manufacturer.

The heart of the detector is a Hamamatsu H7680-01
gated PMT module consisting of a photomultiplier tube,
a drive circuit for high-speed gated operation, and a
high-voltage power supply. The PMT does not have the
106 dynamic range of the in situ lidar return signal.
Therefore, a simple solution for the prototype instru-
ment was to measure different parts of the return signal
in different runs. The control circuitry allows the gain
of the PMT to be varied manually. The Q-synch pulse
from the laser triggers a programmable delay circuit that
turns on the PMT at a manually specified later time to
avoid saturation during the earlier high power portion
of the return. A transimpedance amplifier produces a
voltage proportional to the PMT output current. The
laser Q-synch pulse also triggers a digital oscilloscope
to take 500 samples at 0.2-ms intervals of the voltage,
which is proportional to the photon flux impinging on
the PMT. Collection optics focus the lidar return signal
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FIG. 10. The relationships between the true Gaussian-weighted
volume-averaged extinction at different scales.

FIG. 11. The in situ lidar cloud thickness retrievals vs the (top)
true thickness values and (bottom) retrieved vs true cloud airplane
altitude. The airplane altitude is in terms of the fraction from cloud
base to top. The 200 cases from the simulation used to test the neural
network are shown. The quantization in true cloud thickness is due
to the 25-m spacing of the simulated cloud layers.

TABLE 3. The in situ lidar rms retrieval accuracy of geometric cloud
thickness (Dz, km) and airplane altitude relative to cloud boundaries
(Zplane).*

Ncase Dataset DZ Zplane Experiment

200
200

Training
Testing

0.056
0.063

0.048
0.044

No volume offset

400
400
400

All cases
All cases
All cases

0.059
0.062
0.070

0.046
0.047
0.050

No calibration error
20% calibration error
50% calibration error

200 Testing 0.202 0.228 Std dev of cases

* Further explanation of the table is contained in Table 2.

onto the PMT cathode. The field of view of the optics
was measured to be 628.58. A spectral filter with a
center wavelength of 550 nm and a full-width at half-
maximum of 60 nm is used to reject background light.
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FIG. 12. Simulated in situ lidar time series for downward-pointing
detectors at y 5 2.0 km in field StCu21 for surface albedo of 0.05
and 0.25.

FIG. 13. The in situ lidar area-averaged optical depth retrievals vs
the true optical depth values. The optical depth is weighted by a
Gaussian pattern with an rms radius of 200 m. (top) The 200 testing
cases over all aircraft altitudes, (bottom) 50 cases with the cloud
relative aircraft height between 40% and 60%.

TABLE 4. The in situ lidar rms retrieval accuracy of 1n (ts).*

Ncase Dataset t 50 t 100 t 200 t 400 Experiment

200
200

Training
Testing

0.118
0.166

0.102
0.149

0.093
0.134

0.102
0.135

No volume offset
0.1 , Zplane , 0.9

50
50

Training
Testing

0.083
0.112

0.063
0.099

0.056
0.082

0.081
0.091

No volume offset
0.4 , Zplane , 0.6

100
100
100

All cases
All cases
All cases

0.098
0.143
0.246

0.083
0.132
0.236

0.070
0.121
0.218

0.086
0.118
0.184

No calibration error
20% calibration error
50% calibration error

200 Testing 0.709 0.702 0.691 0.676 Std dev of cases

* ts is the area-averaged optical depth weighted by Gaussian with rms radius of s. The second experiment is to use only those cases in
which the cloud relative airplane height is between 0.4 and 0.6. The calibration error tests for the 0.4 , Zplane , 0.6 experiment. Explanation
of other aspects of the table is contained in Table 2.

The detector was operated with a 10% neutral density
filter to prevent signal saturation at the beginning of the
lidar return signal.

A field experiment to test the prototype in situ lidar
was carried out at the Storm Peak Laboratory (SPL)
located on the top of Mt. Werner (3220-m elevation)
above Steamboat Springs. The SPL is an atmospheric
science research facility operated by the Desert Re-
search Institute of the University of Nevada (Borys and
Wetzel 1997; http://stormpeak.dri.edu/). During the
winter months the lab is often enveloped in cloud. The
prototype in situ lidar was installed on the lab roof on
1 April 2002. The only cloud event during the 2-week
experiment period was on the night of 10–11 April.

A rapidly moving short wave passed through the SPL
area from about 1800 UTC 10 April until 1800 UTC
11 April. The research team arrived at the SPL around
0200 UTC 11 April while the laboratory was experi-
encing moderate to heavy snowfall, a westerly wind of
10–15 m s21 and a temperature of 228C. SPL is at 690
mb and the local temperature was the same as the tem-
perature at 700 mb based on the 1200 UTC National
Weather Service analysis. The GOES-8 brightness tem-
perature was 223 K (2508C), which corresponds to a
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FIG. 14. Two time series from the prototype in situ lidar at SPL on
11 Apr 2002.

cloud-top elevation of approximately 260 mb. There
was very little evidence of riming (i.e., supercooled liq-
uid water) on the roof of the laboratory. Thus, the cloud
system was deep and developing precipitation in the
form of snow at SPL at this time. This regime lasted
until about 0700 UTC when the GOES-8 brightness tem-
perature increased to 260 K (2138C) and remained in
the range of 253 to 260 K (2208 to 2138C) until 1000
UTC. Rapidly moving shortwaves advected over the
SPL area in the winter often generate deep cloud sys-
tems that initially produce intense snowfall, followed
by a rapid lowering of cloud top associated with de-
creasing precipitation from the supercooled water cloud
that engulfs the mountaintop (Borys 2003, personal
communication).

During the time period from 0700 to 1000 UTC, ob-
servers on the roof of the SPL often recorded dense,
but highly variable cloud, with riming on exposed up-
wind surfaces and no solid precipitation. The laboratory
Forward Scattering Spectrometer Probe (Knollenberg
1981), which started operating at 0600 UTC, recorded
values of liquid water content from about 0.2 to 0.5 g
m23, with droplet concentrations ranging from 120 to
200 cm23 and an effective droplet radius of 8–10 mm.
This corresponded to extinction coefficients ranging
from about 40 to 60 km21. The FSSP is intended for
aircraft operation where the airflow is relatively steady
and unidirectional. At SPL, the measurements are highly
influenced by local conditions (wind direction, velocity,
turbulence, and ground obstructions) and cannot be used
to directly compare with the volumetric measurements
made by the in situ lidar. However, the FSSP measure-
ments, along with the visual observations, can be used
to infer that the laboratory was engulfed in a super-
cooled water cloud with an estimated extinction coef-
ficient of about 40–60 km21.

On 11 April the in situ lidar was operated system-
atically from about 0700 to 1000 UTC. To capture the
complete dynamic range of the lidar signal, the PMT
gain had to be manually adjusted in discrete steps. The
operating procedure was to measure 25 time series ap-
proximately 0.55 s apart (the maximum rate at which
the digital oscilloscope could record) at each gain set-
ting. Fourteen sequences of three or four gain settings
were taken at various viewing elevation angles during
the 0700–1000 UTC period. The manual setting of the
gain and PMT time delay meant that there were typically
2 min between successive gain settings. During this
time, cloud conditions would change so that the separate
gain sections of the in situ lidar signal often do not
overlap.

The calibration procedure converts the digital oscil-
loscope sampled voltages into lidar photon fraction us-
ing a system equation approach, rather than with a cal-
ibration measurement. The calibration includes the laser
pulse energy output, the measured detector field of view
and area, the transmission of the neutral density and
spectral filters, and the PMT gain from the manufac-

turers gain curve and the measured PMT control volt-
age. The mean and standard deviation of the mean in
situ lidar signal over the 25 sampled time series at each
gain setting are averaged appropriately over log spaced
time bins. Only those 0.2-ms samples after the PMT
gain stabilizes and with values above the noise level are
included in the averages. Figure 14 shows the in situ
lidar time series composited from two gain sequences.
The prototype lidar signal has a power-law behavior, as
expected from the diffusion theory for a thick cloud.
The time series for the gain sequences overlap well in
these two examples, which suggests that the cloud ex-
tinction was constant over the time required to acquire
them. There is some indication of exponential behavior
at the end of the lidar time series around 0915 UTC,
which may be due to the diffusing photons reaching
cloud boundary.

We do not attempt to use the curve fitting and neural
net retrieval procedure developed in section 3. The sep-
arate time series for each gain setting make the curve
fitting procedure impractical. We are also rather uncertain
of the calibration of the prototype in situ lidar, and we
have no validation of the volume-averaged extinction.
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FIG. 15. Simulated in situ lidar time series for upward-pointing
detectors at y 5 2.8 km in field StCu21 for lidars operating at 532-
and 1550-nm wavelengths.

Nevertheless, we can use Fig. 8 to estimate the volume
average extinction from the in situ lidar signal at partic-
ular times. For the gain section at 0954:05 UTC the pho-
ton fraction is 1.36 3 10211 (mm cm2 ster)21 at 1.2 ms
and 3.5 3 10212 (mm cm2 ster)21 at 2.4 ms. The corre-
sponding volume extinctions from a linear regression of
Fig. 8 are 56 km21 for a 50-m rms radius volume and
46 km21 for a 100-m rms radius volume. The regression
relations from Fig. 8 may not be appropriate due to the
effects of reflection from the snow- and tree-covered
mountain surface. The prototype in situ lidar signals have
no or a very slight exponential decay region, which
means we cannot retrieve the cloud thickness, but does
indicate that the cloud was thicker than 1 km.

5. Two wavelength in situ lidar simulations

The simulations previously described showed that an
in situ lidar operating at a single nonabsorbing wave-
length such as 532 nm can accurately measure the vol-
ume average cloud extinction surrounding the lidar. In
analogy with dual-wavelength solar reflectance remote
sensing methods (Twomey and Cocks 1982; Nakajima
and King 1990), it seems likely that the addition of a
second wavelength at which cloud droplets absorb light
would allow measurement of effective radius and liquid
water content in warm clouds.

What is the appropriate choice for the second wave-
length? The single scattering albedo for typical cloud
droplets should be in the range from 0.95 to 0.995 so
that there is a measurable absorption signal while still
having substantial multiple scattering. Absorption by
water vapor should be very low to avoid dependence
on the water vapor profile. Shorter wavelengths are bet-
ter in terms of laser and detector technology. Wave-
lengths around 1550 nm are the shortest wavelengths
with adequate droplet absorption and low water vapor
absorption. The transmission at 1550 nm of a 1-km
saturated air path at 280 K and 900 mb is 0.99964 (line-
by-line radiative transfer model calculation). The drop-
let single scattering albedo at 1.55 mm ranges from
0.995 at effective radius re 5 5 mm to 0.985 at re 5
15 mm. The required technology is much more difficult
in the near infrared than visible. High laser pulse energy
might be achieved with a deuterium gas Raman shifting
cell, which converts the Nd:YAG 1064 nm fundamental
to 1560.7 nm. Photomultiplier tubes do not work at 1550
nm, but a liquid nitrogen cooled avalanche photo diode
detector with an efficiency of about 10% at 1550 nm is
available.

Simulations of a 1550-nm wavelength in situ lidar
are performed identically to the previous 532-nm sim-
ulations. The same instrument geometry and the same
fractal stratocumulus clouds are used, but the optical
properties are computed at 1550 nm. Figure 15 illus-
trates the difference between the lidar time series at 532-
and 1550-nm wavelengths. As expected from diffusion
theory for an absorbing medium, the 1550 nm has a

more pronounced exponential fall off at later times. The
1550-nm signal is actually larger than the 532-nm signal
at early times, mainly due to lower asymmetry param-
eter at 1550 nm (1 2 g is 13.2% higher at 1550 nm for
re 5 10 mm).

As described in section 3d, a neural network is
trained with half of the 400 cases to retrieve log liquid
water content and effective radius. The input to the
network is the a, b, c parameters fit to the average of
the upward- and downward-pointing detectors. Two
experiments are performed: the first with the six input
parameters from the 532- and 1550-nm lidars, and the
second with the three inputs from only the 532-nm
lidar. Figure 16 shows that the retrieval accuracy is
quite good for two wavelength lidars, but degrades
considerably using only the 532-nm wavelength, par-
ticularly for effective radius. The retrieval accuracy for
all four volume scales is listed in Table 5. The rms
accuracy is between 10% and 12% for LWC and under
0.5 mm for effective radius for the dual wavelength
combination. There is still some ability to retrieve
LWC with a single wavelength because extinction and
LWC are correlated, but there is little skill in retrieving
effective radius with a single wavelength.

These retrieval simulations of liquid water content
and droplet effective radius are very promising for the
dual wavelength in situ lidar concept. Is there any fur-
ther information to be gained from a third wavelength?
The difference between the index of refraction of water
and ice in this spectral region has prompted suggestions
that the ice fraction in mixed phase clouds could be
determined by remote sensing (Pilewskie and Twomey
1987). To separate the absorption effect of liquid drop-
lets from ice particles requires two absorbing wave-
lengths that have distinct amounts of absorption by wa-
ter and ice. The ratio of the bulk absorption coefficient
of ice to that of water is 3.58 at 1550 nm. A third in
situ lidar wavelength near 1760 nm, where the absorp-
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FIG. 16. The in situ lidar volume-averaged LWC and effective radius (reff) retrievals vs the
true values for the s 5 50 m scale for the two experiments. The 200 cases from the simulation
used to test the neural network are shown.

TABLE 5. The in situ lidar rms retrieval accuracy of ln (LWCs) and .er e

Dataset
LWC25

(log)
re,25

(mm)
LWC50

(log)
re,50

(mm)
LWC100

(log)
re,100

(mm)
LWC200

(log)
re,200

(mm) Experiment

Training
Testing

0.108
0.121

0.45
0.53

0.096
0.104

0.42
0.49

0.091
0.106

0.40
0.45

0.103
0.120

0.44
0.52

532 and 1550 nm

Training
Testing

0.268
0.276

1.97
1.87

0.250
0.257

1.96
1.80

0.252
0.250

1.97
1.75

0.283
0.265

1.99
1.69

532 nm only lidar

Testing 0.848 2.30 0.800 2.20 0.704 2.04 0.593 1.92 Std dev of cases

* LWCs is the volume-averaged liquid water content weighted by a Gaussian with an rms radius of s, while re,s is the effective radius
calculated from the ratio of the volume-averaged LWC and extinction. For comparison the variability (std dev) of the LWC and re is also
listed. The accuracy of the 200 cases used for training the neural network are listed separately from the 200 cases used to test the neural
network for experiments using the dual and single wavelength lidars.

tion coefficient ratio is 1.16 and the 1-km saturated path
transmission is 0.99, may add the ability to measure ice
water content (IWC) and particle size. Appropriate ice
crystal scattering phase functions would need to be add-
ed to the retrieval forward modeling, and we would
expect larger errors in retrieving IWC compared to LWC
due to the greater uncertainty in asymmetry parameter
g for ice particles than for liquid cloud droplets.

6. Summary and conclusions
The in situ lidar technique is a new method for mea-

suring extinction averaged over regions hundreds of me-

ters in diameter in optically thick water clouds. The
technique envisions high power laser pulses being emit-
ted horizontally from an aircraft flying inside a cloud
and wide-field-of-view detectors pointing upward and
downward measuring the time series of the number of
returned photons. In situ lidar is an in situ remote sens-
ing technique, combining the advantages of in situ cloud
probes and remote sensing. It has much of the accuracy
and directness of in situ cloud probes, but the large
volume sampling of remote sensing. Of course, it has
the limited geographic coverage of any aircraft-based
method. The large sampling volume of the in situ lidar
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technique will allow much more precise validation of
cloud remote sensing methods than possible now with
the small sampling volumes of current cloud probes.

A diffusion theory calculation predicted that the in
situ lidar time series for an infinite uniform nonabsorb-
ing medium is proportional to [(1 2 g)b/ct]3/2, where
t is time, c is the speed of light, b is the volume ex-
tinction coefficient, and g is the asymmetry parameter.
The addition of absorption multiplies this power-law
behavior with an exponential function, e , where2(12v )bct0

v0 is the single scattering albedo. When the bubble of
diffusing photons is comparable to the size of the cloud,
the loss of photons from the cloud causes the in situ
lidar time series to decrease exponentially with a time-
scale proportional to the square of the cloud thickness.

Retrieval simulations were performed to determine
how accurately the in situ lidar can measure extinction,
optical depth, and cloud thickness in realistic warm stra-
tocumulus clouds. Three-dimensional inhomogeneous
fractal clouds were simulated with a Fourier noise fil-
tering algorithm that generates partially correlated liquid
water content and droplet number concentration fields.
The 100 cloud fields generated, with 25-m pixels and
3200-m domain size, had a wide range of thickness,
mean liquid water path, variability, smoothness, and
mean droplet concentration. A Monte Carlo model sim-
ulated the 532-nm wavelength in situ lidar time series
signal for upward- and downward-pointing detectors at
four positions along a randomly chosen flight altitude
in each cloud. The lidar time series, p(t), are reasonably
well fit by the function ln[p(t)] 5 a 2 b ln(t) 2 ct
(inspired by the diffusion theory solution). A retrieval
algorithm is developed by training a neural network to
predict the volume average extinction (Gaussian-
weighted average at four scales) from the a, b, and c
parameters for each detector. Half of the 400 cases are
used to train the neural net, and half are used to test the
retrieval accuracy. The rms fractional error in extinction
ranged from 6% to 8% depending on the volume scale.
The in situ lidar was able to retrieve the cloud thickness
with about 60-m rms accuracy (thicknesses ranged from
200 to 1000 m). Using only those airplane altitudes near
the center of the cloud gave an the optical depth retrieval
accuracy of under 10%. The in situ lidar technique is
only weakly dependent on the calibration accuracy with
a 50% calibration error giving an extinction error of
25% and causing very little increase in cloud thickness
error. These retrieval accuracies are applicable to over-
cast warm (liquid) stratocumulus clouds with well-de-
fined top and base altitudes. The extinction retrieval
accuracy should be comparable for any liquid cloud, as
the extinction in this simulation ranged from 5 to 250
km21 and the cloud mean droplet concentration ranged
from 50 to 300 cm23.

Simulations were also performed for a potential dual-
wavelength in situ lidar with wavelengths at 532 and
1550 nm. The absorption at 1550 nm is proportional to
the cloud droplet radius, which allows the accurate re-

trieval of liquid water content and effective radius. The
simulated rms accuracy of LWC ranges from 10% to
12% depending on scale, while the effective radius ac-
curacy is about 0.5 mm.

A ground-based prototype in situ lidar was tested in
April 2002 at the Storm Peak Laboratory on Mt. Werner
above Steamboat Springs, Colorado. The 105 mJ per
pulse 532-nm YAG laser pointed vertically, while the
photomultiplier tube detector with a 6288 field of view
could be pointed at any angle. During a cloud event on
the night of 11 April, the lidar measured time series
having the expected power-law behavior with detectable
signal out beyond 40 ms.

SPEC, Inc., has received a NASA contract to build
and test a prototype airborne in situ lidar. Figure 1 il-
lustrates the installation envisioned for the SPEC op-
erated Learjet. After passing through diverging optics
for eye safety, the 532-nm wavelength YAG laser beam
will exit out a cabin window traveling horizontally. The
two detectors will be mounted in a Particle Measuring
Systems canister on the Learjet tiptank on the opposite
wing. The detector fore optics will have 50-mm-di-
ameter lenses with 6288 fields of view pointing upward
and downward. The light for each detector will be
passed through an interference spectral filter to block
some of the nonlaser background light. The solar back-
ground is so overwhelming that it will probably require
an expensive atomic line filter (e.g., Chen et al. 1993)
to operate during the daytime, and the in situ lidar will
initially be operated at night. To cover the large dynamic
range of the in situ lidar signal two types of detectors
will be used. The high-level part of the signal will be
measured with an avalanche photodiode, while the low-
er-level part will be measured with a photomultiplier
tube. Initial tests of the instrument will be performed
on the ground at the Storm Peak Laboratory, while later
tests will occur on the Learjet aircraft in a variety of
cloud types. The performance of the airborne in situ
lidar will be evaluated by comparing extinction retriev-
als in relatively homogeneous clouds with averages of
local extinction determined from a Forward Scattering
Spectrometer Probe (FSSP-100) (Knollenberg 1981)
and a cloud extinctometer (Zmarzly and Lawson 2000)
on the Learjet research aircraft.
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